Postlesional vestibular reorganization improves the gain but impairs the spatial tuning of the maculo-ocular reflex in frogs.

نویسندگان

  • Martin Rohregger
  • Norbert Dieringer
چکیده

The ramus anterior (RA) of N.VIII was sectioned unilaterally. Two months later we analyzed in vivo responses of the ipsi- and of the contralesional abducens nerve during horizontal and vertical linear acceleration in darkness. The contralesional abducens nerve had become responsive again to linear acceleration either because of a synaptic reorganization in the vestibular nuclei on the operated side and/or because of a reinnervation of the utricular macula by regenerating afferent nerve fibers. Significant differences in the onset latencies and in the acceleration sensitivities allowed a separation of RA frogs in a group without and in a group with functional utricular reinnervation. Most important, the vector orientation for maximal abducens nerve responses was clearly altered: postlesional synaptic reorganization resulted in the emergence of abducens nerve responses to vertical linear acceleration, a response component that was barely detectable in RA frogs with utricular reinnervation and that was absent in controls. The ipsilesional abducens nerve, however, exhibited unaltered responses in either group of RA frogs. The altered spatial tuning properties of contralesional abducens nerve responses are a direct consequence of the postlesional expansion of signals from intact afferent nerve and excitatory commissural fibers onto disfacilitated 2nd-order vestibular neurons on the operated side. These results corroborate the notion that postlesional vestibular reorganization activates a basic neural reaction pattern with more beneficial results at the cellular than at the network level. However, given that the underlying mechanism is activity-related, rehabilitative training after vestibular nerve lesion can be expected to shape the ongoing reorganization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postlesional vestibular reorganization in frogs: evidence for a basic reaction pattern after nerve injury.

Nerve injury induces a reorganization of subcortical and cortical sensory or motor maps in mammals. A similar process, vestibular plasticity 2 mo after unilateral section of the ramus anterior of N. VIII was examined in this study in adult frogs. The brain was isolated with the branches of both N. VIII attached. Monosynaptic afferent responses were recorded in the vestibular nuclei on the opera...

متن کامل

Ontogeny of Mouse Vestibulo-Ocular Reflex Following Genetic or Environmental Alteration of Gravity Sensing

The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appro...

متن کامل

Cervical and ocular vestibular evoked myogenic potentials in multiple sclerosis participants

  Background: Multiple sclerosis (MS) is a chronic neurological disease that affects brain and spinal cord. The infratentorial region contains the cerebellum and brainstem. Vestibular evoked myogenic potentials (VEMPs) are short-latency myogenic responses. Cervical vestibular evoked myogenic potential (cVEMP) is a manifestation of vestibulocolic reflex and ocular vestibular evoked myogenic pote...

متن کامل

مقایسه نتایج آزمون ویدئویی ایمپالس سر در افراد مبتلا به تومورهای سیستم دهلیزی محیطی و مرکزی

Background and purpose: Vestibular Schwannoma (VS) is a lesion in peripheral vestibular system that leads to reduction of Vestibulo Ocular Reflex (VOR) gain and incidence of corrective saccades. Researches showed that the result of Video Head Impulse Test (VHIT) is positive in peripheral vestibular system disorders and negative in central vestibular system disorders. The aim of this study was t...

متن کامل

Retinoic acid deficiency impairs the vestibular function.

The retinaldehyde dehydrogenase 3 (Raldh3) gene encodes a major retinoic acid synthesizing enzyme and is highly expressed in the inner ear during embryogenesis. We found that mice deficient in Raldh3 bear severe impairment in vestibular functions. These mutant mice exhibited spontaneous circling/tilted behaviors and performed poorly in several vestibular-motor function tests. In addition, video...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 2003